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Abstract. A general method for the design of the magnitude response of 2-D I1R digital filters by using linear programming 
is presented. The formulation of the linear problem is achieved by developing appropriate linear constraints which ensure 
the minimization of a realistic approximation error of the magnitude response. Moreover, the stability of the resultant filter 
is guaranteed and the computational cost is decreased by exploiting the symmetries appearing in the linear programming 
problem. The method leads to satisfactory designs as shown with two examples. 

Zusammenfassung. Vorgestellt wird ein allgemeine Vorgehensweise fiir die Approximation des Frequenzgangs Zweidimensio- 
naler rekursiver Digitalfilter mit Hilfe linearer Programmierung. Hierbei wird die Problemstellung fiir die lineare Program- 
mierung derart formuliert, dab geeignete lineare Einschr~inkungen entwickelt werden, die die Minimierung eines realistischen 
FehlermaBes fiir die Approximation des Frequenzgangs gew~ihrleisten. Dariiber hinaus wird die Stabilit~it des resultierenden 
Filters garantiert. Der Rechenaufwand wird dadurch erniedrigt, dab die Symmetrien ausgenutzt werden, die im Laufe der 
linearen Programmierungsaufgabe auftreten. Die Methode fiihrt zu zufriedenstellenden Ergebnissen, wie anhand zweier 
Beispiele gezeigt wird. 

R6sum6. Une m6thode g~n6rale pour l'61aboration de la r~ponse d'amplitude d'un filtre RII num6rique bidimensionnel en 
utilisant la programmation lin~aire est pr~sent6e. La formulation du probl6me lin6aire est obtenue en d~veloppant des 
contraintes lin6aires appropri6es garantissant la minimisation d'une erreur realiste d'approximation de la reponse d'amplitude. 
En plus, la stabilit6 du filtre r6sultant est garantie et le cofit de calcul est diminu6 en exploitant les sym6tries apparaissant 
dans le probl~me de programmation lin6aire. La m6thode conduit h des 61aborations satisfaisantes ainsi qu'il est montr6 par 
deux examples. 

Keywords. Two-dimensional digital filters, infinite impulse response (IIR) filters, design of filters, linear programming, stability 
of 2-D digital filters. 

1. Introduction 

The first efforts for the design of 2-D IIR digital filters were based on the transformations applied on 
1-D digital filters [4,9, 12]. However, transformations from the 1-D case do not generally provide 
satisfactory approximations for 2-D rational functions. To this end, over the past few years many 
computer-aided optimization approaches have been developed for the design of 2-D IIR digital filters 
[6, 7, 10, 13]. 

The design problem of IIR digital filters may be viewed as a nonlinear complex approximation problem. 
For its solution, various approaches have been proposed based on the design of 1-D IIR digital filter; 
however, they involve some difficulties and disadvantages which are discussed in the sequel. Specifically, 
the lack of the fundamental theorem of algebra in the 2-D case leads to problems of ensuring stability 

0165-1684/87/$3.50 (~ 1987, Elsevier Science Publishers B.V. (North-Holland) 



18 (3. Vachtsevanos et al. / Two-dimensional IIR digital filter design 

since it is reduced to the test of a 2-D polynomial, whose eigenvalues are actually irreducible algebraic 
c u r v e s .  

Nonlinear optimization methods used for the solution of the nonlinear problem are associated with 
well-known disadvantages such as lack of convergence of the algorithm to the global optimal solution 
and considerable computation and programming costs. Another disadvantage of nonlinear optimization 
techniques refers to the choice of an initial starting point which is usually required to lie close to the 
extremum. 

For the successful resolution of these difficulties, linear models have been developed which approximate 
the 2-D IIR digital filter design problem. These models are solved using the classical linear programming 
(LP) algorithms [8]. It is obvious that a linear approximation to an inherently nonlinear problem presents 
difficulties in formulating the optimization procedure correctly, but they are counterbalanced by the many 
advantages of LP. Linear formulations developed thus far are extensions of techniques originally used 
for the design of 1-D IIR digital filters [2, 18] and are based upon the work of Matthews et al. [11]. They 
can be distinguished into two major categories. 

The first linear approximation approach involves the design of 2-D I Ig  digital filters via approximation, 
in a weighted Chebyshev (minimax) sense, of the filter magnitude-squared specifications. Dudgeon's [5] 
work belongs to this category. His method is based upon a differential correction algorithm [1] and is 
solved using an LP algorithm recursively. This approach suffers from a few serious drawbacks of which 
the most important are the high computation cost and the procedural complexity of determining the actual 
filter transfer function from the magnitude-squared expression via discrete Hilbert transform and minimum 
phase stability criteria [ 17]. A new formulation based on the Chebyshev approximation and requiring the 
solution of an LP problem only once with a consequent drastic decrease in computer cost was recently 
proposed by the present authors [14]. 

The second category of linear approximation problems allows for the design of 2-D IIR filters on the 
basis of not only the magnitude response but also linear phase specifications. Concurrently, it is possible 
to use linear stability cQnstraints for filter stability as proposed by Chottera and Jullien [3]. One serious 
drawback is attributed to this technique: solution of the design problem does not always guarantee a good 
filter since the objective function to be minimized is but a weighted error. 

The main goal of the present work is to appropriately modify existing formulations so that solution of 
the approximation problem results in acceptable magnitude response characteristics. This is accomplished 
by the development of appropriate linear constraints capable of assuring a good approximation error for 
the magnitude response while guaranteeing filter stability. Actually, the optimization problem is not a 
minimax problem any more but has been properly formulated in order to satisfactorily design the magnitude 
response by minimizing a linear cost function. Moreover, the symmetries contained in the linear formulation 
are exploited so that memory requirements and computer costs are kept to a minimum. 

Two examples illustrating the proposed method are presented. In the first, a comparison is attempted 
between the new approach and the method suggested by Chottera and Jullien [3]. In the second, a low-pass 
filter is designed with octagonal and therefore approximately circular symmetry characteristics. 

2. Design approach 

An approximation to the design of a 2-D transfer function, as proposed in [3], may be based on a 
variation of the complex Chebyshev approximation, originally introduced for the 1-D case by Matthews 
et al. [11]. 
Signal Processing 
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In the sequel, a more general formulation of the problem than that of Chottera and Jullien is presented 
first, thus relaxing the design requirements. Specifically, let /4(z1,., z2.) be the transfer function of a 
two-dimensional recursive digital filter where, by the overbar, the complex nature of/-I(za, z2) is denoted. 
At each sampling point (m, n), belonging to the sampling region S,/~(Z~m, Z2,.) may be expressed in the 
form 

ITl(zlm, Z2.)=.4(Zlm, Zz . ) /B(z ,m ,Z , . )  = Y. aOZ'imZ~..___ Y~ Y'. bi, z,,.z2: ' (1) 
Xi=O j=O ] / k i=O j=O 

for all rn = 1, 2 , . . . ,  M, n = 1, 2 , . . . ,  N and (m, n)~ S, where boo = 1 and Zlm =e -j~'", z271 =e -j~" are the 
normalized frequencies in the frequency domain. Let also G.,.  = G(z~m, z271) be the complex function 
containing the filter's magnitude and phase specifications. Define now the complex error function by the 
following formula: 

Ernn : Gr?1n - / ' ~ ( Z l m ,  Z2n)"  ( 2 )  

The FSm?1 are known small variables and represent an admissible complex approximation error at every 
sampling point (m, n). Note that this error is introduced in order to relax the requirements imposed by 
the specifications. From (2), by equating real and imaginary parts, the following equations result: 

[Re((3,..-/~m.)] Re(/~(zl,., z2.))-  [Im((~,.?1-/~m.)] Im(/~(zl.,, Z2n))- Re(.4(Z,m, g2n))= 0, (3) 

[Im((~.,. -/~m.)] Re(/~(z.., z2.)) + [Re(C~,.?1 -/~m.)] Im(/~(Zlm, z2.)) - Im(,~(z,,., z2.)) =0 (4) 

for all (m, n) ~ S, where Re(. ) and Ira(. ) denote the real and imaginary part of (.), respectively. 
Alter some algebraic manipulations similar to those reported in [3], the LP problem is formulated as 

follows: 

Minimize s r 

Subject to 

m2 n2 ml 711 

-- Re(ZlmZa2?1)aq+Re(Gm?1-ff~mn) <~,  
i 0 i = o j = o  

(5) 

m 2 712 m I n I 

• ( D i j ) m n b o - 2  2 
i=O j=O i=O j=O 
i+j#O 

~:/> 0, for all (m, n) ~ S, where 

From the 

and 

' ~m.)  Im(z lmZa2 . )a i j+Im(Gm.  - <~ ,  

(C~j).,. = Re((~m. -/~m.) Re(z~l,.z~.) - Im((3m. -/~,..) Im(z~mZ~.), 

(Dij),.. = Im((~.,. -/~,..) Re(z*lmZ~.)+ Re((~m. -/~,..) Im(Z*l,.~.). 

above formulation, it is seen that the desired approximation has the form 

I~(z,.,, z2.)l-~ J~m.I 

&/4(Z,m, Z2.)--' 2f C~.... 

(6) 

(7) 

(8) 

(9) 
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The linear phase specifications are given by a relation of the form 

&t~" .  = - ( 7"1Wl.. + T2w2.),  (10) 

where T~,/'2 are positive numbers. The above conditions are satisfied when I/~m.I is a small positive 
number. If [/~.,.1 = 0, we obtain the formulation introduced by Chottera and Jullien [3]. 

The design problem considered here is aimed at simultaneously satisfying both magnitude and linear 
phase specifications. The objective function ~:, as defined above, only represents a weighted error and 
does not suffice for a satisfactory design. To this end, a new approximation error, 8,.., of the magnitude 
response, at each sampling point, is introduced; this error influences the design of  the magnitude response 
only and is defined as follows: 

8... = Io" .  - G . I  2 - I /~(za" ,  z2.)l 2. (11) 

Let (S~R),.., (~0m. denote the values of the expressions at the left-hand side of (3) and (4) respectively. 
Note that 

f = max {1~:~1~., 161...} (12) 
(m,n)~S 

as can be seen from (3), (4), and (5). 
Now, equations (3) and (4) take the form 

(fR),.. + Re(.g.(z,,., z2.)) = Re((~". -/~m.) Re(/~(za", z2.)) - Im(( ;" .  - / ~ " . )  Im(/~(z,", z2.)), 
(13a) 

(~:,)". + Im(.4(z,,., z2.)) = Im(t~... - /~. . . )  Re(/~(Zl,., z2.)) + Re(t~". - /~, . . )  Im(/ t (z ," ,  zz . ) ) .  
(13b) 

If we take the sum of the squares of (13a) and (13b), we arrive at the following expression: 

I d,,,. -/7,..121/~(z1.,, z2.)l == IA(z,,., z2.)12 + 2(fa), . .  Re(A(z ," ,  zz.)) +2(f , ) , . .  Im(.4(Zl", z2.)) 

2 2 + (~R)m. + (~,)". .  (14) 

Substituting Re(fi,(z~,., z2.)) and Im(fi,(z~", z2.)) from equations (13) in (14), the error 8,.. may be written 
in the form 

8mn = [2 Re(/~(Z,m, z2.))[Re(C~m. - E.,.)(~ZR)". + Im( t3,.. - E"n) (~I )"n]  "3t- 2 Im(/~(z,,., z2.)) 

x [Re(t~,.. - /~, . . )  (so,),.. - Im(g~m. - E m n ) ( ~ R ) m n ]  -- ( ~ R ) 2 m n  - -  (s~i)2.]/I/~(z,", 52.)12, 
(15) 

Signal Processing 

which expresses 3m. as a nonlinear function of  the unknown coefficients of the transfer function. 
It is evident from (15) that minimization of (S~R),.., (S~0m. (and therefore of s ~) does not guarantee the 

minimization of  18re.I, which represents a realistic measure of the approximation error of the magnitude 
response, since the denominator/~(Zl,. ,  z:.) is involved in the expression. 

This implies that formulation (5) indeed does not lead to a satisfactory approximation. Therefore, the 
minimization of 18,..1, (m, n) ~ s, must be ensured. Sufficient conditions for the minimization of [Stun I result 
from (15), by taking into account the inequality a2+ b2~ > 21al Ibl, as follows: 

1(6)".1 I_(~:R)".J ] 
18".1 ~< IRe(t~". -/~".)l IRe(B(z,", z2.))l + [Im(B(Zl", z2.))[_l 

+ l l m ( G r . . - E  ~1[ 1._ (s~)""t + I(SCR)""I ] (SXR)~"+(SX~)~" (16) 
. . . .  I_l lm(B(z~, . ,  5=.))1 I R e ( ~ z = . ) ) l d  I#(z,. , ,  5=.)12 " 
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Since IRe((~,,,-/~r,,)l <~ 1 and IIm(tg,,,-/~m,)l ~< 1, it is clear that the constraints 

21 

<~ 6~, <~ 82 (17a, b) 
IRe(/~(zl.., z2.))] [Im(/~(z,m, z2.))[ 

are appropriate and sufficient conditions, with 81, 82 small positive numbers, leading to a small value for 
16m.l. Condition (17a) is equivalent to the following two constraints: 

Re(/~(zl,,, z2.)) ~>~, Re(/~(Zl~, z2.)) <~-~ (18a, b) 
/51 

Moreover, Chottera and Jullien [3] stipulate that suitable linear conditions for stability may be written as 

Re(/~(Zlm, z2.)) i> e for [z,., I = 1 and Iz=.l = 1. (19) 

We observe that (18a) and (19) have the same form since ~ and 6~ are positive numbers. To this end, 
we choose constraint (18a) in place of (17a) since it satisfies stability constraint (19). In conclusion, 
conditions (17b) and (18a) are the additional constraints to be included in the formulation of linear 
problem (5), in order to ensure the minimization of [6m, I. However, constraints (17b) and (18a) are not 
linear with respect to the coefficients ~:, 6~, and /52. To resolve this problem, the following variable 
transformation is introduced: 

~'= 1 1 ~ ,  6'1 = 1/6~, /5~ = 1 1 / 5 2 ,  

c t , j = a , j / ~ ,  i = l , 2 , . . . , r n l ,  j = l , 2 , . . . , n l ,  (20) 

f l i j  = b o /  ~, i = l ,  2 ,  . . . , rn2 ,  j = l ,  2 ,  . . . , n 2 .  

From the above it can be seen that it is preferable to minimize /51,82 rather than s c. Thus, problem (5) 
takes the form 

Maximize 8'1 + Q6~ 

Subject to 

t~l 2 1"12 rrl I n I 

R e ( z l , , z a 2 , ) a o + R e ( G , , ,  - - , ( co)m.t3,j- E E ' 
i O j  0 i = 0 j = 0  

+j~o 

m2.2  ~ . l . 1  ) (  
E E (D,))m.f l , ) -E E ' " I m ( Z l , , , z a 2 . ) a i j + I m ( G . , .  -/~,.n ~ 1, (21) 
,=oj=o ,=oj=o 

. , 2  . 2  . . I . , 5  . 5  

6~-~:'- E E Re(z',,.z~.)fl,j~<0, 61- I E E Im(Zlmg~n) f lo i  " <~0, 
i = 0 j = 0  i ~ O  j = O  

i + j ¢ O  

where ( ,  6'~, /5~>0 and Q is an appropriate positive constant. 
Linear problem (21) contains a large number of constraints. This fact hinders an easy solution of the 

pr|mal problem necessitating a formulation in its dual form. The linear constraints of (21) also contain 
many symmetries; this is due to the fact that the coefficient matrix in the revised Simplex algorithm 
contains some symmetries with respect to its elements. Taking advantage of these symmetries reduces 
memory requirements while speeding up the solution. The solution of  the dual problem is achieved via 
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a revised Simplex method appropriately modified so that block symmetries in the coefficient matrix are 
fully utilized. The algorithm was implemented on a PDP 11-34 computer using double precision arithmetic. 

Example 1. The design of a 2-D IIR digital filter is considered using the proposed formulation and that 
of Chottera and Jullien [3] for purposes of  comparison. Let the transfer function of the filter be specified 
in the form 

H ( z l , z 2 ) = [ a l ( l +  2 2 2 22 Za+Z2+ZlZ2) +a2(za+zz+z~z2+ 2 2 2 2 zlzz) + a 3 z l z 2 + a 4 ( l + z ~ +  z2+zlz2)2 2 2 

x ( z , + z 2 + z 2 z 2 + z ,  zZ2)+as(l+ 2 2 2 2 Z 1 "~- Z2.- ~ ZIZ2)ZIZ2"[- a6z1z2(z  I q- z2-.I- z2z2.-I - z1z22)]  

× [1 + b,2(z,  + z2) + 2b2(z 2 + z22) + 2b3(z+zz)(Z, z2 + z21 + z~) + b4(4z 1 z2 + Za 2 + z22) 

+2bs(2zlz2+ 4 4 2 2 zl + z2+ 2zlz2) +4b6zlz2(z2 + z2 + zlzz) + 2b7(zl + z2)zlz2 

+( z2+z~+z l z2 )+Zbsz ,  z2(z ,+z2)+ 2 2 2 2b9z,z2(zl + z 2) +2bloz21z22(z, + z2) 

2 2 4 4 2 6 1 4 z 3 z 3 ] - l .  (22) + 2b.z~z3(z~ + z2) + b~2z~z2+ b~3z~z2+ 

The above transfer function has properly been chosen (with linearized coefficient terms) to possess 
quadrantal symmetry. Thus, the characteristics of quadrantal symmetry (which approximates circular 
symmetry) [15, 16] are exhibited while the total number of coefficients, relative to the general form (1), 
is reduced. Moreover, let the desired filter's magnitude specifications be of the form 

I G1 for 0 ~  < w.,. < Rp, 

Re(t~r . . )= G 1 - G 2 w m , , + R p G E - R s G 1  f o r R p ~  < W,,, , ,<Rs, (23) 
I R--~- Rs  R p -  R s 

[ . G 2  for Rs ~< w.,. ~< x/2.rr, 

where Win. =~/W~m+ W2. and GI=  1, G2=0,  I/~,..I = 0, Rp=0.1rr and Rs=0.3~r. 
The total number of  sampling points is 148 (56, 28, and 64 in the pass-band, transition-band and 

stop-band case, respectively). At first, we consider T~ = T2 = 6 and the design problem is solved using the 
Chottera and Jullien method. The resultant coefficients are given in Table 1, while s c takes the value of 
0.004049502. 

The above solution leads to an unsatisfactory design for the magnitude response. This is seen from the 
fact that the commonly used 12 criterion 

. t :  EE [I/4,..I-lC5,,.,.12 ' (24) 
(m,n)cS 

takes the high value J = 23.5932 for 148 sampling points. 

T a b l e  1 

C o e f f i c i e n t s  o f  t h e  t r a n s f e r  f u n c t i o n  b y  t h e  m e t h o d  o f  C h o t t e r a  

a n d  J u l l i e n  

a t = 0 .00150  b I = - 0 . 5 5 8 5 2  b s = - 5 0 0 . 0 0 0 0 0  

a z = - 0 . 0 0 1 1 4  b2= - 5 0 0 . 0 0 0 0 0  b g =  - 5 0 0 . 0 0 0 0 0  

a 3 = 0 .00542  b 3 = 503 .28602  blo = - 3 9 6 . 2 2 8 8 9  

a 4 = - 0 . 0 0 6 5 9  b4 = 249 .37198  bl l  = - 0 . 0 4 2 8 5  

a 5 = 0 .00379  b 5 = - 5 0 0 . 0 0 0 0 0  bl2 = - 6 . 7 1 4 0 8  

a 6 = 0 .00012  b 6 = - 1 . 2 3 1 3 4  b13 = - 0 . 0 8 9 5 2  

b 7 = 398.38451 bt4 = - 0 . 5 9 7 7 7  

Signal Processing 
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S o l v i n g  t h e  a b o v e  p r o b l e m  b y  t h e  p r o p o s e d  m e t h o d  ( w i t h  Q = 1 in  (21) ) ,  we  o b t a i n  t h e  coe f f i c i en t s  

l i s t ed  in  T a b l e  2 w h i l e  we f ind  t h a t  ~ = 1.5735521 a n d  61 = 356.677,  32 = 205.580.  

Table 2 

Coefficients of the transfer function by the proposed method 

a I = 0.09928 b I = 2.90469 b s = 20.30024 
a 2 = -0.08421 b 2 = -4.18640 b 9 = -11.28699 
a 3 = 0.23985 b 3 = 5.39825 blo = -23.76603 
a 4 = 0.04008 b 4 = -6.69908 bll = 5.30287 
a 5 = -0.02279 b 5 = -8.13214 b12 = -12.34524 
a 6 = -0.06012 b 6 = -6.84939 b13 = -11.25750 

b7 = 11.76315 b t 4  = 14.98797 

M o r e o v e r ,  co s t  f u n c t i o n  (24)  fo r  148 s a m p l i n g  p o i n t s  t a k e s  t h e  v a l u e  J = 0 . 0 2 0 9  a n d  t he  v a l u e  o f  

m a x { 6 , , , }  is f o u n d  to  b e  

m a x { 6 m , }  = m a x  I IGm. -/Tm.I =- [Rm, 12l = 0 .079523.  (25) 

F o r  t h e  s a k e  o f  c o m p a r i s o n ,  s o m e  o f  t h e  v a l u e s  o f  t h e  d e s i g n e d  m a g n i t u d e  r e s p o n s e  as  wel l  as  t h e  

c o r r e s p o n d i n g  v a l u e s  f o r  a se t  o f  s a m p l i n g  p o i n t s  (Wlm, W2,) a re  s h o w n  in  T a b l e  3. 

Table 3 

Wlm W2n Desired values Values of the designed filter 

0.1166 0.06732 1 1.01197 
0.17952 0 1 1.00783 
0.06969 0.2601 1 1.00319 
0.15708 0.27207 1 0.99301 
0.10486 0.45942 0.75 0.73935 
0.13981 0.61257 0.5 0.49415 
0.17477 0.76571 0.25 0.24485 
0.20972 0.91885 0 0.00574 
0.83012 1.04094 0 0.00496 
0.38281 1.67721 0 0.00269 
1.80011 2.25726 0 0.00039 
2.84828 2.30643 0 0.00068 
w 2.56221 0 0.00037 

T h e  m a g n i t u d e  f r e q u e n c y  c h a r a c t e r i s t i c  o f  t h e  d e s i r e d  f i l ter  is s h o w n  in  Fig. 1. C o m p a r i n g  t h e  t w o  

m e t h o d s ,  t h e  e f f ic iency  o f  t h e  p r o p o s e d  o n e  is o b v i o u s .  M i n i m i z a t i o n  o f  t h e  ~: o n l y  d o e s  n o t  a s s u r e  a n  

a c c e p t a b l e  d e s i g n  fo r  t h e  m a g n i t u d e  r e s p o n s e .  

E x a m p l e  2. In  t h i s  e x a m p l e ,  a 2 - D  I I R  l o w - p a s s  f i l ter ,  w h o s e  d e n o m i n a t o r  is a r ea l  f u n c t i o n ,  is d e s i g n e d .  

T h i s  m e a n s  t h a t  f o r  t h e  m i n i m i z a t i o n  o f  (16) ,  t h e  s a t i s f a c t i o n  o f  c o n s t r a i n t s  (17a )  suff ices .  T h e  t r a n s f e r  

Vol. 12, No. 1, January 1987 
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(b) 
Fig. 1. The magnitude frequency response of the filter for Example 1: (a) the perspective plot and (b) the contour plots. 

function is taken to be of the form 

H ( z l , z z ) = [ a l ( z 2 z 2 + z 2 + z l Z 2 + Z l ) 4 + a z ( z l z 2 + z 2  + 2 2 2 4 2 z2+ z , z2+ 1) + a3(z,z2+ z2+ zlzZ9+ zl) 2 

x ( z l z 2 + z ~ + z ~ +  2 2 z i g  2 + 1) + 4a4(  z21z2 + Z 2 ~  Zl Z2 '~ Z1)3(ZlZ2--1- Z2 AI - Z 2 -~ Z2Z2--~ 1) 

+ 4 a d  z21z2 + z2 + zl zg + z, )( zl z2 + zZ~ + z~ + z~ z~ + 1) 3] 

x [1 + b, + 2bzs,s2+ b3(s~ + 2)(s~- 2) + 2b4s,s2(s~- 3) 

+4bss~+Zb6s,sz(s21+Z)+467s~(s~_Z)+bg(s2+2)2 + 4 2 -1 b9( s2 -4Sz+2)]  , (26) 

where sl = z, + z~ -1 and s2 = z2+z~' .  The desired filter specifications have the form of (21) with G, = 1, 
G2=0, t/~,,nl =0,  Rp = 0.2"rr, Rs= 0.6~r. The total number of sampling points is 156 (56, 28, and 72 in the 

(a) (b) 

Fig. 2. The magnitude frequency response of the filter for Example 2: (a) the perspective plot and (b) the contour plots. 

signal Processing 
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pass -band ,  t r an s i t i on -band  and  s top -band  case, respect ively) .  Fo r  T~ = T2 = 6, the coefficients o f  the t ransfe r  

func t ion  are given in Table  4, while ~:= 0.02218 and  ~ = 0.0666. Moreover ,  we find that  J =0.1252 and  

max{~,,n} = 0.09235. Note  that  ~ is found  to be  close to max{~,,n}, as was expec ted  accord ing  to (12) for  

Im(/~lm, z2n)) = 0. The magn i tude  f requency  response  o f  the des igned  filter is shown in Fig. 2. 

Table 4 

Coet~cients of the transfer function for Example 2 

a 1 = 0.0023985 b t = 0 . 0 0 0 2 6 5 9  h 6 = 0.0116120 
a 2 = -0.0002922 b 2 = - 0 . 1 9 3 6 3 0 0  b 7 = -0.0005768 
a 3 = -0.0006459 b 3 = 0.0167000 b 8 = 0.0002531 
a4 = 0.0007517 b 4 = 0.0019414 b 9 = 0.0121520 
a 5 = -0.0003963 b 5 = 0.0070610 

3. Conclusions 

In this pape r ,  a genera l  me thod  for the des ign o f  the magn i tude  response  o f  a 2-D I I R  digi ta l  filter by  

us ing l inear  p r o g r a m m i n g  is presented .  The  l inear  p rob l e m is fo rmu la t ed  by add ing  a set o f  a p p r o p r i a t e  

l inear  cons t ra in ts  in o rde r  to achieve a sa t i s fac tory  des ign o f  the magn i tude  response .  The  s tabi l i ty  o f  the  

resul tant  filters is a lways  assured  by p r o p e r  se lect ion o f  the  l inear  constraints .  The requ i red  c o m p u t a t i o n a l  

cost  is r educed  by  exp lo i t ing  symmetr ies  which  a p p e a r  in the coefficient matr ix.  So lu t ion  o f  the p r o b l e m  

is a c c o m p l i s h e d  in its dua l  form,  by using the revised S implex  a lgor i thm.  An add i t i ona l  r educ t ion  o f  the  

c o m p u t a t i o n a l  cost  may  be a t ta ined  by  using symmetr ies  in the magn i tude  response ,  wheneve r  app rop r i a t e .  

In this case,  we select  the  form of  the t ransfer  funct ion  so that  it possesses  some kind  o f  symmet ry  (e.g., 

quad ran t a l  or  oc tagona l  for  the a p p r o x i m a t i o n  o f  c i rcular  symmetry)  by  l inear iz ing the terms o f  its 

coefficients.  The  p r o p o s e d  m e t h o d o l o g y  is shown to be a powerfu l  des ign tool  as i l lus t ra ted  by  E x a m p l e s  

1 and  2. 
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